Modeling for Seasonal Marked Point Processes: An Analysis of Evolving Hurricane Occurrences
نویسندگان
چکیده
Seasonal point processes refer to stochastic models for random events which are only observed in a given season. We develop nonparametric Bayesian methodology to study the dynamic evolution of a seasonal marked point process intensity. We assume the point process is a non-homogeneous Poisson process, and propose a nonparametric mixture of beta densities to model dynamically evolving temporal Poisson process intensities. Dependence structure is built through a dependent Dirichlet process prior for the seasonally-varying mixing distributions. We extend the nonparametric model to incorporate timevarying marks resulting in flexible inference for both the seasonal point process intensity and for the conditional mark distribution. The motivating application involves the analysis of hurricane landfalls with reported damages along the U.S. Gulf and Atlantic coasts from 1900 to 2010. We focus on studying the evolution of the intensity of the process of hurricane landfall occurrences, and the respective maximum wind speed and associated damages. Our results indicate an increase in the number of hurricane landfall occurrences and a decrease in the median maximum wind speed at the peak of the season. Introducing standardized damage as a mark, such that reported damages are comparable both in time and space, we find that there is no significant rising trend in hurricane damages over time.
منابع مشابه
The Use of Statistical Point Processes in Geoinformation Analysis
Many objects in space can best be modeled statistically by using point processes. Examples are fires in an urban environment, herds of animals in large areas, earthquakes and forest fires and large speckles on a radar image. Modern developments in point process theory now much better than before allow us to make statistical models to explain the observed patterns. In this paper, we will address...
متن کاملHigher-order co-occurrences for exploratory point pattern analysis and decision tree clustering on spatial data
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and re...
متن کاملReplicating annual North Atlantic hurricane activity 1878–2012 from environmental variables
Statistical models can replicate annual North Atlantic hurricane activity from large-scale environmental field data for August and September, the months of peak hurricane activity. We assess how well the six environmental fields used most often in contemporary statistical modeling of seasonal hurricane activity replicate North Atlantic hurricane numbers and Accumulated Cyclone Energy (ACE) over...
متن کاملPotentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems
Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014